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1. Abstract 

A crucial aspect of current fleet management is the optimization of overnight charging 

schedules for electric vehicle (EV) fleets. The goal is to minimize operating costs while 

guaranteeing that cars are prepared for their daily tasks. This work investigates the creation 

and use of a hybrid strategy that combines heuristic techniques with mixed-integer linear 

programming (MILP) to produce economical and effective charging solutions. The main goal 

is to prioritize station-based charging in order to reduce the need for more costly public 

charging infrastructure. A Greedy Heuristic and Random Search method were created using 

Xpress Workbench and Python to quickly provide charging schedules that are almost ideal. 

The outcomes show that the heuristic techniques may guarantee that all vehicles are 

properly charged while significantly lowering charging expenses.  

The study concludes that giving station-based charging priority is a workable and 

economical approach to managing an EV fleet. The research also sheds light on possible 

areas for future development to increase scalability and flexibility, such as the incorporation 

of more sophisticated heuristics and the investigation of dynamic scheduling strategies. 

2. Introduction 

Reducing carbon emissions and advancing toward sustainable transportation have made the 

switch to electric vehicles (EVs) a top priority. Electric vehicles (EVs) present a viable 

substitute for internal combustion engine (ICE) cars in light of the rising concerns over 

climate change and the depletion of fossil fuels. However, there are a number of practical 

issues with the widespread use of EVs, particularly for large fleets. One such issue is 

scheduling their charging. In addition to satisfying operational demands, effectively 

managing the charging of EV fleets minimizes energy costs, minimizes reliance on costly 

public charging infrastructure, and eases pressure on the power grid. As the number of EVs 

in fleets increases, the need for optimal scheduling systems becomes more pronounced 

(Alonso et al., 2014).xd 

When it comes to charging management, fleet operators confront a number of significant 

obstacles. First and foremost, they have to make sure that every car has enough charge to 

last through the next day's operations. This is crucial for fleets in sectors like ride-sharing, 

public transportation, and logistics. Second, operators need to keep the total cost of billing 

as low as possible. These costs include both the direct costs of electricity and the indirect 

costs of using public chargers, which are often more expensive than private charging 

stations (Houbbadi et al., 2019). Furthermore, because the capacity of the infrastructure 

used for charging is frequently constrained, it is crucial to prioritize which cars should be 

charged at fleet depots and which, if required, should be charged at public stations. 

Scheduling EV charging becomes more complex when factoring in time-of-use (TOU) 

electricity prices, which fluctuate throughout the day and can significantly impact overall 

costs if not managed properly (Liu et al., 2021).  

Several methods have been suggested by earlier research to improve EV charging 

schedules. These strategies span a variety of techniques, from more advanced heuristic-

based algorithms like Genetic Algorithms (GA) and Greedy Heuristic approaches to more 

conventional optimization techniques like Mixed-Integer Linear Programming (MILP). MILP is 

a popular method for solving scheduling problems because it models the problem as a set of 
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linear equations with integer constraints and is good at finding optimal solutions. However, 

while MILP is powerful, it can be computationally expensive and impractical for large fleet 

operations (Alonso et al., 2014). Due to this constraint, heuristic methods have been 

investigated; while they may not always yield the best answer, they do provide near-optimal 

results in a significantly shorter amount of time. For instance, GA has been shown to be 

effective in managing the trade-offs between computational time and solution quality by 

simulating the process of natural selection (Liu et al., 2021). 

In situations when choices must be made fast and with little computational power, greedy 

heuristics in particular are frequently employed. In the context of EV charging, a Greedy 

Heuristic prioritizes station-based charging over public charging, thereby reducing the overall 

charging costs while ensuring that all vehicles are adequately charged (Houbbadi et al., 

2019). This approach can be both a benefit and a drawback because it bases pricing 

decisions on the best option at the time rather than always taking the long term into account. 

This method offers a quick and scalable solution, but it might not always result in the best 

use of resources, particularly when there is a capacity constraint on charging stations or 

when the energy needs of the vehicles vary. 

The restricted quantity of charging stations at fleet depots has a significant role in the 

scheduling of EV charging. Due to its affordability and internal management of the charging 

process, station-based charging is largely relied upon by fleet operators. All cars cannot be 

charged concurrently at the depot due to restricted station capacity. This constraint forces 

some vehicles to use public charging stations, which are often subject to availability and 

higher costs (Houbbadi et al., 2019). Multiple studies have attempted to solve the problem of 

optimising EV charging for big fleets in recent years. The optimisation of electric bus (EB) 

fleets was investigated by Houbbadi et al. (2019), with an emphasis on reducing battery 

degradation costs by strategically arranging charging sessions. Their research showed that 

fleet operators might save money over the long run by increasing the life of their EV batteries 

and lowering their immediate operating expenses through smart scheduling of charging. 

Similar to this, Liu et al. (2021) suggested a bilevel programming approach that responds to 

TOU energy pricing and allocates EVs to a limited number of chargers in an optimum 

manner. This model showed how charging cars off-peak and reducing the need for public 

chargers might result in considerable cost savings. 

Apart from these techniques, Random Search has become a useful heuristic tool for large-

scale optimisation issues. The method by which Random Search operates is by producing 

many random solutions and picking the top-performing one. Even while this approach cannot 

ensure that the best solution will be found, it can produce a workable solution fast, 

particularly when combined with other optimisation strategies as MILP and GA (Liu et al., 

2021). Because Random Search doesn't require the processing overhead of more 

conventional approaches, it may be used to search for potential answers more broadly in 

situations when the issue space is too big to be examined completely. Random Search can 

assist in determining workable charging schedules for EV fleets that minimise expenses 

while guaranteeing that every car is adequately charged. 

This project's main objective is to create an optimisation framework for scheduling EV fleets' 

nighttime charging. This framework will give a thorough solution to the charge problem by 

combining the techniques of MILP, Greedy Heuristic, and Random Search. As a baseline, 

the MILP model will provide the best possible solution to the issue. To deliver near-optimal 
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answers more quickly, the study will also use heuristic techniques in recognition of the 

scaling constraints of MILP. The goal of these heuristic techniques is to prioritise station-

based charging in order to minimise total expenditures and lessen reliance on public 

chargers. The study will also investigate how GA may be used to simulate natural selection 

and gradually evolve better schedules, hence improving the quality of the solutions. 

With the use of Python and Xpress Workbench, these optimisation techniques will be put 

into execution to provide fleet operators with an effective way to manage their electric 

vehicle fleets. The project's main goal is to keep charging expenses to a minimum while 

making sure that every car has enough power to run. Additionally, the project will examine 

the trade-offs between computing time and solution quality, offering important new 

information on the best approaches to large-scale EV fleet management. The project's 

output is expected to add to the expanding literature of research on EV fleet management by 

providing useful suggestions for scheduling charging times most effectively in realistic 

situations (Houbbadi et al., 2019; Liu et al., 2021). 

To sum up, effective scheduling of electric vehicle charging is essential to cutting expenses 

and guaranteeing fleet preparedness. In order to solve the difficulties associated with EV 

charging scheduling for big fleets, this project will provide an optimisation framework that 

integrates GA, MILP, Greedy Heuristic, and Random Search techniques. The study's 

findings will be very helpful in determining the best practices for managing EV fleets, with an 

emphasis on cutting expenses and decreasing dependency on public charging 

infrastructure. 

3. Literature Review 

The transportation and energy sectors are facing new issues as electric vehicles (EVs) 

become more widely used. With the world moving away from fossil fuels and towards 

lowering carbon emissions, EVs are now essential to reaching sustainable transportation 

targets. The increased use of EVs, especially in big fleets, poses serious difficulties for 

charging schedule optimisation. These difficulties are essential to maintaining grid stability, 

energy consumption control, and cost effectiveness. This review of the literature critically 

assesses the research that has been done on the scheduling of EV charging, with an 

emphasis on optimisation techniques like machine learning, heuristic methods, and meta-

heuristic algorithms like Genetic Algorithms (GAs). It also looks at how various approaches 

handle real-world problems including battery management, time-of-use (TOU) power pricing, 

and restrictions in the charging infrastructure. 

3.1 Heuristic and Meta-Heuristic Approaches for EV Charging Scheduling 

Heuristic techniques, including the Greedy Heuristic and meta-heuristic algorithms like GAs, 

are extensively utilised in the resolution of complex and dynamic EV charging scheduling 

issues. These techniques are useful for managing non-linear and multi-objective situations, 

particularly when dealing with big EV fleets and smart grids. The efficiency of GAs in 

particular has been shown in maximising load patterns and guaranteeing EV integration into 

current power systems.  

An optimisation method utilising GAs was created by Alonso et al. (2014) to control EV 

charging in residential areas. The study stressed that in order to lessen peak demand and 

slow down power system ageing, flattening transformer load profiles in low-voltage systems 
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is crucial. The strategy was created to prevent expensive grid infrastructure changes by 

dynamically adapting charge schedules to variations in grid demand. According to Alonso et 

al. (2014), the use of GAs made it possible to make real-time modifications to charging 

schedules, avoiding overloads and preserving grid stability. This study illustrates how 

heuristic techniques, which provide advantages like peak shaving and lower power losses, 

can optimise EV charging in limited locations. 

Large-scale electric bus (EB) fleet management is another area where heuristic approaches 

are being used more frequently. Using GAs, Gao, Zhang, and Wang (2019) created an 

optimisation model for electric bus charging schedules. Their model took power losses, 

voltage variations, and fluctuations in energy prices into consideration while minimising 

operating expenses. Through the use of GAs, the researchers were able to show that these 

algorithms are especially useful in large-scale settings, where traditional optimisation 

techniques are difficult due to energy consumption fluctuation, like bus depots. This study 

emphasises the heuristic approaches' scalability in real-world electric vehicle fleet 

management, particularly in public transportation where operational readiness and cost 

efficiency are critical (Gao, Zhang, and Wang, 2019). 

3.2 Techniques for Optimising Large-Scale EV Fleet Management 

The scheduling issue is made more difficult by sizable EV fleets, such as electric bus fleets. 

Various considerations, including vehicle battery condition, limited charging station capacity, 

and shifting energy prices, must be considered when managing charging schedules for big 

fleets. A major obstacle in managing a big fleet of vehicles is making sure that every vehicle 

is charged within the allotted time frame without going over the charging station's capacity. In 

order to reduce bus fleet charge costs, Rinaldi, Ferreti, and Lanza (2013) suggested a 

mixed-integer linear programming (MILP) approach.  

According to Rinaldi, Ferreti, and Lanza (2013), the MILP model efficiently managed the 

scheduling of EVs by assigning charging slots while minimising energy usage and charging 

infrastructure expenses. 

Although MILP models are durable, they can be computationally expensive, especially when 

used for large fleets. Therefore, as alternatives to get near-optimal solutions while reducing 

computational complexity, heuristic techniques like Greedy Algorithms have been presented. 

In order to minimise peak loads and save operating expenses, Jahic, Milinkovic, and 

Vuckovic (2019) created a greedy algorithm to optimise the charging schedule of a sizable 

fleet of electric buses. According to Jahic, Milinkovic, and Vuckovic's 2019 paper, heuristic 

approaches can effectively provide outcomes without the computational strain of MILP, 

which makes them appropriate for real-time fleet management applications. 

Battery ageing is a crucial component of fleet management. Over time, frequent cycles of 

charging and discharging can deteriorate battery performance and shorten the overall life of 

electric vehicle batteries. In order to solve this problem, Wang et al. (2020) created a Markov 

Decision Process (MDP) model that was able to optimise 16,359 electric buses' charging 

schedules over 1,400 bus routes. Their methodology aimed to minimise battery wear and 

charging expenses while maintaining operational readiness.  

In addition to considering the long-term effects of battery deterioration, the MDP model 

offered a scalable method for controlling fleet-wide charging (Wang et al., 2020). This study 
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emphasises how crucial it is to include battery management in EV charging plans, especially 

for large fleets where replacement battery costs can mount up. 

3.3 Infrastructure Restrictions' Function in Charging 

A common constraint on managing an EV fleet is the availability of charging infrastructure. 

Even though fleet depots usually have designated charging areas, there might not be 

enough of them to accommodate large fleets' needs, particularly during peak hours. 

Although there are versatile, public charging stations which are typically more expensive and 

might not always be available. For operational efficiency and cost reduction, it is important to 

assign automobiles between private and public charging stations in an efficient manner. 

A scenario-based stochastic model was presented by Yang, Liu, and Zhang (2021) to solve 

the problem of inadequate charging infrastructure. Their model used k-means clustering to 

produce realistic scenarios in order to optimise the charging schedule for electric buses with 

a restricted number of charging stations. By increasing computational efficiency, this method 

made large-scale applications possible. Fleet managers were able to efficiently deploy 

charging resources while reducing expenses because to the model's reliable approach for 

handling schedule unpredictability (Yang, Liu, and Zhang, 2021). This work provides a useful 

method for resolving charging infrastructure constraints in large-scale fleet operations by 

including scenario-based modelling. 

Similarly, Zhang, Cai, and Song (2019) investigated how to include TOU power price into EV 

parking lot charging schedules. By planning charging at off-peak times when power costs 

are lower, their methodology maximised the charging process. To cut down on charging 

expenses even more, the model also included renewable energy sources like photovoltaic 

(PV) systems. According to Zhang, Cai, and Song's 2019 study, fleet operators may save a 

lot of money on operating expenses by integrating renewable energy and TOU pricing into 

their charging schedules. This approach also helps fleet operators achieve sustainability 

goals. 

3.4 Machine Learning and Predictive Models in EV Charging 

There are now more options for optimising EV charging schedules because of recent 

developments in machine learning (ML). In order to provide more precise scheduling based 

on battery health, ML models have been used to forecast the Remaining Useful Life (RUL) of 

EV batteries. Fleet managers will find these predictive models especially helpful as they 

allow for proactive battery management and lower the likelihood of unplanned battery 

failures. Additionally, predictive models provide more accurate scheduling, guaranteeing that 

cars are charged to maximise battery life while satisfying operational requirements. 

In order to optimise the charging schedules for a fleet of lightweight electric delivery trucks, 

Chen et al. (2020) used machine learning algorithms. To develop the best possible charging 

schedules, the study took into account battery health and the availability of charging stations. 

Researchers discovered that ML models decreased total operating costs, increased battery 

life, and enhanced charging efficiency. This study emphasises how machine learning (ML) 

may improve EV charging schedule accuracy and efficacy, especially in big fleets where 

battery management is crucial (Chen et al., 2020). 

Future research should focus on the integration of ML with optimisation techniques like 

GA and MILP. Fleet operators may create more effective charging schedules that take into 
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consideration both short-term operating requirements and long-term battery management by 

integrating predictive models with optimisation approaches. 

3.5 Environmental and Economic Impacts 

Electric buses, in particular, provide substantial financial and environmental advantages over 

traditional fuel-powered automobiles A study by Lajunen (2014) found that hybrid and fully 

electric buses significantly reduce both operational costs and greenhouse gas emissions. 

The study did point out that the advantages of electric buses are dependent on the 

availability of renewable energy sources and the effectiveness of the infrastructure for 

charging them. Because of this, maximising charging schedules ensures that EVs contribute 

to a sustainable energy future in addition to cutting expenses (Lajunen, 2014). 

Ou, Zhang, and Chang (2010) highlighted this point further by examining the fossil energy 

consumption and greenhouse gas emissions of alternative fuel buses across their whole life 

cycle.  According to their analysis, the least number of emissions was produced by electric 

buses—but only when the electricity came from low-carbon or renewable energy sources. 

This emphasises the necessity of comprehensive solutions that incorporate both vehicle 

scheduling and more extensive changes to energy policies (Ou et al., 2010). 

3.6 Challenges and Future Directions 

There are still a number of issues with EV charging optimisation, despite recent 

improvements. A number of variables, including driving style, weather, and road conditions, 

can affect how much energy an electric car uses. To increase the precision of energy 

consumption estimates, future research may need to include dynamic variables and real-

time traffic data in their models (Pelletier et al., 2019). 

Furthermore, the initial expense of purchasing electric buses and setting up the necessary 

infrastructure for charging them remain major obstacles to their broad adoption. In order to 

encourage the transition to electric fleets while mitigating the financial risks associated with 

new technologies, governments and transit agencies will need to create financing models 

(Ong, Mahlia, and Masjuki, 2012). 

4. Problem Description 

The Electric Vehicle Charging Scheduling Problem (EV-CSP) in this project addresses the 

challenge of scheduling the charging of a fleet of electric vehicles (EVs) using limited 

charging resources. An integrated charging model with multiple charging options will be 

developed to determine and allocate charging schedules that minimize operational costs, 

taking into account the capacity of the charging stations and the availability of public 

charging infrastructure. The objective is to maximize the operational efficiency of the fleet 

while minimizing the total charging cost, which includes station and public charging costs. 

Depending on availability and constraints on budgets, the fleet operator must schedule 

charging at either private fleet stations or public chargers to guarantee that all vehicles meet 

their daily operational requirements. The fleet has three main charging options: Public 

Charging, Station Charging, and No Charge (for vehicles that have enough charge left). 

Each vehicle's remaining charge, the operational needs for the following day, the capacity of 

the charging stations, and the pricing differences between station and public charging are all 

taken into consideration when determining where and when to charge it. 
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Public chargers must be used by vehicles that need to be charged but are unable to be 

accommodated at fleet charging stations because of restricted capacity. However, the 

optimisation challenge is further complicated by the fact that public chargers are usually 

more expensive and have less availability certainty. The goal is to reduce dependency on 

public chargers in order to minimise operating costs, while giving priority to station charging 

because it is typically more economical. 

 

Figure 1:  EVs travel process including charging. 

The station charging method is the most economical choice for fleet managers as fleet of 

vehicles can be charged overnight at designated fleet depots. The main expenses linked to 

this choice are the Operational Costs, which comprise the expenses related to station 

maintenance, the electricity consumed during charging, and the Capacity Constraint, which 

arises from the fact that fleet stations can only accommodate a restricted number of vehicles 

concurrently. Vehicles that need to be used for early shifts the next day and those with the 

least amount of charge left get priority. 

Public charging second method, which is utilised when the station is completely full. If there 

are no spaces available at the station, vehicles will have to use public charging stations. If 

there are no spaces available at the station, vehicles will have to use public charging 

stations. While this offers flexibility, there are two drawbacks: public chargers may not 

always be available, adding uncertainty to the charging process, and they cost a lot more 

than station charging. The fleet manager needs to carefully consider how many cars are 

using public charging to minimise expenses and maintain operational readiness. 

And last, there is No Charge, which is a choice for cars that have enough battery life left to 

finish their trips the following day without requiring more charging. In order to free up station 

capacity for vehicles that require charging more urgently, these cars won't be charged on a 

given day. The algorithm will use the remaining energy and the impending operational 

requirements to determine which vehicles can be left uncharged. 

End-Users' Requirements in EV Fleet Charging Optimization 

During this study, particular end-user needs for maximising electric vehicle (EV) fleets' 

overnight charging schedules have been determined. The principal aim was to develop a 

system that would satisfy the fleet operations' logistical requirements while minimising 

operational expenses and optimising charging efficiency. Using heuristic algorithms (such as 



10 | P a g e  
 

Greedy) and Mixed-Integer Linear Programming (MILP) models, this study attempted to 

achieve its objectives by determining both optimal and nearly optimal solutions.  

• Cost Efficiency: Fleet managers' main goal is to keep charging-related expenses to 

a minimum. The analysis shows significant cost savings by giving station-based 

charging priority over public infrastructure. Heuristic algorithms like Greedy as well as 

the MILP model, both efficiently minimise overall charging expenses, with a focus on 

reducing the more costly public charging fees. 

• Effective Scheduling: The capacity to control charging schedules without going 

over the station's capacity has been identified as one of the essential operating 

needs. By integrating capacity restrictions over a 21-day period, this study offers 

models to fleet operators that aid in the optimisation of charging priority and vehicle 

rotation. Especially the heuristic approaches provide rapid modifications to day-to-

day activities, improving decision-making in real time. 

• Sustainability: Aligning activities with environmental goals is a crucial demand from 

public sector stakeholders. Station-based charging is supported by the models in this 

study, and it works well with renewable energy sources. The research is important to 

public transport authorities that are focused on green transitions since it is in line with 

policy measures that aim to reduce carbon footprints. 

Tools and Software Used 

To optimise the charging schedules for electric vehicle (EV) fleets, a variety of software tools 

and programming environments was used in this study. Each tool was carefully chosen 

based on its suitability for strategic planning and real-time decision-making, as well as its 

capacity to handle difficulties related to addressing complicated optimisation problems. An 

overview of the instruments utilised and the reasoning behind their choice is provided below. 

• Xpress Workbench: For creating and resolving Mixed-Integer Linear Programming 

(MILP) models, utilise the Xpress Workbench. Because of its strong performance in 

managing complex optimisation issues, Xpress was chosen as the best option for 

locating globally optimal solutions while working within the limitations of the fleet's 

charging infrastructure. 

• Python: Because of its speed and versatility, Python was chosen to develop the 

Greedy Heuristic algorithm. It made use of libraries like NumPy for effective data 

handling, enabling real-time decision-making and rapid response to change fleet 

conditions. 

• Microsoft Excel: Excel was used to prepare and handle the data. Its intuitive 

interface made it simple to arrange input data, which allowed for a seamless 

integration into the optimisation models. Examples of this data include vehicle charge 

levels, station capacities, and cost factors. 

5. Methodology 

This chapter provides an in-depth explanation of methodology used to solve the Electric 

Vehicle Charging Scheduling Problem (EV-CSP) for a fleet of electric vehicles (EVs). The 

project's main objective is to reduce the overall cost of charging while making sure that every 

vehicle has enough charge to meet its operational requirements by the following day. The 

strategy used two main optimisation techniques: a Mixed-Integer Linear Programming 
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(MILP) model created in Xpress and a Greedy Heuristic implemented in Python. Based on 

computational speed, solution quality, and practicality, a comparative analysis was 

conducted to evaluate the efficacy of each model that was created to solve the EV-CSP. 

 

Figure 2: Detailed explanation of EV vehicle charging and running cycle 

5.1 Research Approach 

Due to the constraints of charging station capacity, time-of-use (TOU) electricity pricing, and 

the different energy requirements of each car, the problem of optimising EV fleet charging is 

intrinsically difficult. The requirement for scalable, affordable, and rapid solutions requires the 

use of two different approaches: a more robust mathematical optimisation strategy combined 

with a fast heuristic solution. This methodological approach was chosen to make sure the 

models could handle various real-world situations when decisions needed to be made 

quickly or completely optimised. 

The process included several crucial phases: 

1. Data Collection and Preprocessing 

2. Implementation of the Greedy Heuristic in Python 

3. Development of the MILP Optimization Model in Xpress 

4. Comparison and Analysis of Results 

5.1.1.  Data Collection and Preprocessing 

Data on vehicle energy usage, charging station capabilities, and TOU pricing for electricity 

were needed to solve the EV-CSP efficiently. A fleet of 14 cars was included in the dataset, 

which was collected over the course of 21 days and included information on things like 

remaining battery levels, total energy used by each car, and the accessibility of charging 

stations. The amount of energy required by each vehicle was used to decide whether it 

required charging on a particular day or not. 



12 | P a g e  
 

The expenses of charging at public and private fleet stations (also known as station charging 

and public charging, respectively) were also included in the data. The scheduling of charging 

hours to minimise expenses was influenced by the fluctuating costs of electricity throughout 

the day, which was reflected in time-of-use electricity pricing. To verify that all of the data 

points in this dataset were complete and appropriate for analysis, anomalies were removed 

during the preprocessing stage. 

In the given datasets, there are parameters (Base Parameters) of the following. 

Base Parameters for Dataset 

• V = Number of vehicles 

Indicates the total number of electric cars (EVs) in the fleet that needs to have their 

charging optimised. 

 

• D = Number of days 

Represents the number of days in the planning period 

 

• C = Charging station capacity 

Represents the maximum number of vehicles that can be charged at the fleet's 

dedicated charging station at once. 

 

• fs = Cost of charging at the station 

The amount paid for every energy unit used at the fleet's charging station during the 

charging process. 

 

• fp = Cost of charging at a public charger 

Represents the amount paid for every energy unit used at the public charging station 

when there is no space available in charging stations. 

 

• t = Running time after full charge  

Represents the number of days vehicle V can run after getting full charged at the 

station. 

 

• t0 = Initial charge level 

Represents the number of days vehicle V can still run with it’s initial charging 

percentage. 

Decision variables 

• x(v, d) = Charging decision at station 

A binary decision variable that takes a value of 1 if vehicle v is charged at the station 

on day d, and 0 otherwise. 

 

• y(v, d) = Charging decision at public charger 

A binary decision variable that takes a value of 1 if vehicle v is charged at a public 

charging station on day d, and 0 otherwise. 

 

• total_station_cost = Total cost incurred by charging vehicles at the station 
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The total cost, computed over the course of the schedule period, from each vehicle 

charged at the station. 

 

• total_public_cost = Total cost incurred by charging vehicles at public charging 

stations 

The total cost of using public charges, depending on how frequently and how long 

they are used. 
 

• total_cost = Overall cost of charging 
the total of total_station_cost and total_public_cost, which amounts to the entire cost 

of car charging during the optimisation period. 

 
Value of t and t0 is shown below. These values were written in excel sheet which was then 

uploaded in xpress software. 

No. t t0 

1 3 1 

2 3 0 

3 3 2 

4 3 1 

5 3 2 

6 3 1 

7 3 0 

8 3 1 

9 3 1 

10 3 1 

11 3 2 

12 3 1 

13 3 1 

14 3 2 

Table 1: Value of t and t0 used in xpress software  

5.2.  Model Formulation 

A mixed-integer linear programming (MILP) model was developed to address the Electric 

Vehicle Charging Scheduling Problem (EV-CSP). The model's goal is to reduce an electric 

vehicle fleet's overall charging costs over a specified time period while guaranteeing that 

each vehicle is charged effectively to satisfy its operational needs. The MILP model takes 

into account a number of restrictions, such as the limited capacity of charging stations, the 

desire to reduce dependency on public charging infrastructure, and time-of-use electricity 

price. 

5.3. MILP Optimization Model in Xpress 

A Mixed-Integer Linear Programming (MILP) model was created using Xpress Workbench, 

an optimisation tool renowned for its capacity to resolve challenging mathematical 

programming issues, as a supplement to the heuristic approach. By taking into account 
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every possible charge option for the whole fleet during the specified time period, the MILP 

model is intended to identify the globally optimal solution. 

The MILP formulation ensures that the overall cost is minimised while still fulfilling the 

operating needs of the fleet by taking into consideration the charging limits of the fleet, 

including station capacity, public charging prices, and TOU pricing. The MILP model, in 

contrast to the Greedy Heuristic, optimises across all vehicles and days while taking the total 

solution into account for each decision. 

The approach described by Liu and Lamsali (2009), who utilised MILP to location and 

allocation difficulties, optimising the scheduling of facilities based on capacity and demand, 

is also in line with the need for optimisation in this project. This fundamental strategy 

explains why MILP should be used to oversee the restricted number of charging stations 

while guaranteeing low charging expenses and station overloading. 

5.3.1. Rationale for the MILP Model 

The MILP method was selected because of its: 

Optimality: When long-term cost minimisation is the top goal, it ensures the best feasible 

solution by applying mathematical techniques to the problem. 

Precision: The model ensures that every facet of the charge issue is taken care of because 

it is quite accurate and accounts for a variety of limits and variables. 

Flexibility: In real-world situations where fleet sizes, charging requirements, and costs may 

differ, Xpress's flexible constraint management and adaptations come in handy. 

5.4. Initial Base Model Formulation – Mixed Integer Linear 

Programming 

1. Step 1: Initialization: All of the decision variables and parameters are first initialised 

by the model. This involves establishing the values for V, D, C, fs, fp, and the arrays 

for battery levels (t and t0). 

2. Step 2: Binary Decision Variables: Determining whether a vehicle is charged at a 

specific location on a given day is what the binary variables 𝑥 (𝑣,𝑑 ) and y (𝑣,𝑑 ) 

represent. 

3. Step 3: Initializing Constraints: Capacity restrictions and charging specifications 
are put into practice to guarantee that vehicles are charged correctly and the station's 
capacity is respected. 

4. Step 4: Optimisation Solver: To minimise overall billing costs while meeting all 

limitations, the goal function is passed into the optimisation solver (Xpress or Python-

based tools). 

5. Step 5: Output: The findings include each vehicle's charging schedule, along with 

information about whether it was charged at a station or a public charger and the 

overall expenses incurred during the scheduling time. 

 

Step 1 and step 2 are explained in data collection and preprocessing part where all the 

parameters and decision variables are defined. Next comes step 3 where other parameter 

and constraints are defined as given below: 
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5.4.1. Initialization 

 

The goal of this block is to initialise the data and parameters from the 

EV_Charging_Schedule_modified Excel file.xlsx. 

• t: Indicates how long each car can be driven on a full charge. Column A is where the 

values are read (from cells A2 to A15). 

•  

t0: Taken from column B, this number indicates each vehicle's starting battery charge 

level (from cells B2 to B15). 

When dealing with huge datasets for fleet management, the initialisation step enables the 

model to read external data straight from a spreadsheet. 

5.4.2. Objective Function 

 

Goal: Reduce the overall cost of charging for all vehicles and days. 

• fs: The station's charging expense. 

• fp: The price of using a public charger for charging (usually more than fs). 

 

The total cost of utilising the station and public chargers is determined by adding together all 

vehicles (v in 1..V) over all days (d in 1..D). The solver is instructed to minimise the overall 

cost Z by using the minimize(Z) function. 

 

 

The image shared above contain formulation for a Mixed Integer Linear Programming (MILP) 

issue that aims to minimise the overall cost of charging for a fleet of electric cars (EVs). Let 

us examine each component of the formulation in more detail: 
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5.4.3. Constraints 

Station Capacity Constraint 

 

The purpose of this constraint is to make sure that the total number of vehicles charged at 

the fleet's station on day d never goes above the charging capacity of the station, denoted 

by C. 

• adds up the binary choice variables  which stands for the quantity of 

vehicles that were charged at the station on day d. 

• The number of vehicles that can be charged simultaneously is limited by the station's 
maximum capacity, C. 

 

Public Charging Activation 

 

This restriction guarantees that cars are only charged at a public charger if, by the time their 

initial charge runs out, they haven't been fully charged at the station. 

• represents the vehicle's starting charge level (v). 

• Sums up the number of days the vehicle v has been charged at 

the station from day 1 to  

• The amount of station charging that the car has got is indicated on the left-
hand side. Public charging is permitted if the device wasn't fully charged at the 

station  
 
Continuity Constraint for Public Charging 
 

 

This constraint makes sure that a vehicle can only use a public charger if it hasn't received 

enough charging time at the station in the tv days (the amount of time it can operate after a 

full charge) that have passed. 

•  Sums up the station charges for vehicle v during the last tv 

days. 
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• The limitation makes sure that the vehicle can be charged at a public charger 

if it hasn't been fully charged at the station during this time (denoted by ). 

•  This guarantees that the summation begins on a day that is 

valid (never earlier than day 1). 

 

Binary Variable Constraints 

 

Both  are binary decision variables. As a result, they are limited to 

accepting values of 0 or 1, which represent whether the vehicle is charged at the station 

or a public charger on any day. 

Constraints: 

• Makes sure there are never more cars than the station can handle charging 

on any one day. 

• Public charging is only allowed when necessary (i.e., when a vehicle hasn't 

been sufficiently charged at the station). 

• To ensure cost-effectiveness and operational readiness, the model accounts 
for the vehicle's starting charge, the capacity of the charging station, and the 
amount of time it takes for a vehicle to run out of charge. 
 

Output: 

This section is discussed below in analysis and finding section in detail. Please refer 

to section 6. Analysis/Findings & Discussion: Optimizing Electric Vehicle Charging 

Schedules 

 

5.5. Greedy Heuristic Implementation in Python 

The Greedy Heuristic algorithm was the second method used to solve the EV-CSP. This 
approach was selected due to its ease of use and speed at producing almost ideal results. 
This strategy was chosen because it can manage real-time decision-making in scenarios 
when computer resources are limited, and an instantaneous response is needed. 
 
The Greedy Heuristic algorithm prioritises the options that are most affordable and practical 

right now. This means that when it comes to EV charging, the algorithm gives preference 

of charging vehicles at the fleet station because it is less expensive there and only switches 

to public charging when the fleet station is full. Day by day, the algorithm makes judgements 

without taking into account the wider future ramifications, depending only on the system's 

current condition. 

Python is a flexible programming language that is frequently utilised to create algorithms for 

optimisation problems, and it was utilised to implement the heuristic. Because of its many 

libraries, such as NumPy for numerical calculation and Matplotlib for data visualisation, 

Python was the best option for putting the Greedy Heuristic into practice and evaluating it. 
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5.5.1. Rationale for the Greedy Heuristic 

The Greedy Heuristic was selected due to its: 

• Efficiency: The algorithm analyses the charging plan in real time, which makes it 

appropriate for situations requiring prompt decision-making and big fleets. 

• Simpleness: The model is straightforward to use and comprehend, which makes it 

helpful for fleet managers who don't need complex optimisation tools but yet need 

quick, practical answers. 

• Scalability: The heuristic works well with a growing number of vehicles, making it a 

useful tool for big fleets, making it a practical tool for large fleets. 

 

5.5.2. Second Model Formulation – Greedy Heuristics 

Step 1 (Initialization): Determines the number of vehicles, days, capacity of the station, 

prices, and starting battery levels. 

Step 2 (Binary Decision Variables): Initializes binary variables to track where each vehicle 

is charged on each day. 

Step 3 (Constraints): Enforces the maximum capacity of the station and makes sure that 

vehicles are only charged when their batteries are extremely low. 

Step 4 (Greedy Heuristic Execution): Executes the heuristics to assign public charging 

when the station is full and uses the algorithm to prioritise station-based charging. 

Step 5 (Output): Calculates and prints the total costs incurred, along with the charging 

schedule for each vehicle across all days. 

The given Python code, which uses the Greedy Heuristic method to schedule EV fleet 

charging, is broken down step-by-step here: 

Step 1: Initialization 

The goal of this stage is to initialise all of the data, parameters, and decision variables. 

V: The total number of cars in the fleet, which is 14 in this instance. 

D: The total number of days (21 days) in the billing schedule. 

C: The charging station's capacity (five cars can be charged at once). 

fs: The price a car must pay at the station to be charged (£10.0 per session). 

fp: The price of charging a car at a public charger (£15 more than station charging each 

session). 

t: The maximum number of days, kept in an array, that a vehicle may run on a full charge. 

 

t0: Starting charge levels for every vehicle, indicating the number of days each car can go 

without needing to be charged. 
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Step 2: Binary Decision Variables 

The goal is to initialise the binary decision variables that decide if the vehicle is charged at 

the station or at a public charger on a certain day. 

 

Two 2D arrays, x(v, d) and y(v, d) are made to reflect the choice of whether a vehicle is 

charged on a specific day 

• x(v, d): A binary decision variable that represents whether or not vehicle x gets 

charged at the station on day d. If x [v ,d]= 1, the vehicle is charged at the station; if 

x[v ,d]=0, the vehicle is not. 

• y(v, d): Similarly, y[v ,d] is a binary decision variable that represents whether vehicle 

v is charged at a public charger on day d. 

Since there are no vehicles scheduled for charging at the beginning of the operation, all 
entries in both arrays are initially set to 0. 

 
Step 3: Initializing Constraints 
 

Objective: Verify that the model follows the capacity of the charging station and the 

requirements for charging, avoiding overcharging and ensuring that cars are charged when 

necessary. 

Capacity Constraints 

The primary restriction makes sure that the daily number of vehicles being charged at the 

station doesn't go beyond the station's capacity 𝐶 . This is enforced by the Greedy Heuristic, 

which counts the number of cars that have been charged at the station on a particular day 

and stops additional station billing when the capacity is reached. 

Charging Requirement Constraints 
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Vehicles must be charged when their remaining charge falls below a critical level, defined by 

a threshold of 1 day. This prevents vehicles from running out of battery. The heuristic 

prioritizes vehicles with the lowest remaining charge and charges them at the station, if 

capacity allows. Once the station is full, remaining vehicles are charged at a public charger. 

Vehicles with the least amount of charge left are charged first according to the Greedy 

Heuristic. The vehicles are arranged daily according to the amount of charge left in 

ascending order. This makes sure the cars that require charging the most are given priority. 

This procedure is followed according to: 

• Vehicles that have less than a day's worth of charge left on them are planned for 

charging. 

• Additional vehicles are directed to a public charger if the station is full. 

Step 4: Greedy Heuristic Execution 

Goal: Use the Greedy Heuristic to reduce charging expenses while maintaining fleet 

functionality. 

The algorithm prioritises the vehicles with the lowest charge levels for each day 𝑑 by sorting 

them according to their remaining charge 𝑡0[𝑣]. The heuristic then: 

• Charge at Station: It determines if space is available at the station for every 

vehicle with a remaining charge that is less than the threshold. The vehicle is 

charged at the station and the charging counter is updated if that is the case. 

• Charge at Public Charger: Any additional vehicles that need to be charged must 

pay a higher fee at a public charger if the station is full. 

• Reduced Charge for Non-Charged Vehicles: The remaining charge for 
vehicles that are not charged is lowered by one day to represent one day of 
non-recharging operation. 
 

 

Step 5: Output 

This section is discussed below in analysis and finding section in detail. Please refer to 

section 6. Analysis/Findings & Discussion: Optimizing Electric Vehicle Charging Schedules 
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The Greedy Heuristic offers a productive and economical way to plan when to charge a fleet 

of electric cars over a certain time frame. It guarantees that, while honouring the station's 

capacity restrictions, the cars that require charging the most urgently are given priority. 

Minimising public charges lowers total expenses. This technique provides a useful, scalable 

approach to fleet management, making fast judgements with a reasonable computing 

overhead, even though it does not guarantee a globally optimal solution. 

6. Analysis/Findings & Discussion: Optimizing Electric Vehicle 

Charging Schedules 

The challenge of optimising overnight charging schedules to ensure operational efficiency 

and minimise costs arises from the growing use of electric vehicles (EVs) in urban transport 

fleets and the limitations placed on the infrastructure for charging them. The goal of this 

research was to create two unique strategies to address this problem: an Xpress-solved 

Mixed-Integer Linear Programming (MILP) model and a Python version of the Greedy 

Heuristic. Both approaches sought to identify an economical way to charge a fleet of 

fourteen electric cars (EVs) over the course of twenty-one days, making sure that the 

charging station's capacity was not surpassed and minimising the need for more costly 

public charging. 

This chapter's analysis, conclusions, and discussion are arranged into sections that show 

the outcomes of the two approaches, address how well they perform in terms of cost 

effectiveness and operational efficiency and contrast their conclusions with information 

gathered from the chapters on methodology and literature review. We'll go over the 

advantages and disadvantages of each approach as well as important topics like cost 

savings, public charging, and station utilisation. 

Analysis of MILP Model Results 

Execution of MILP Model 

The outcomes of the MILP model, which was run using Xpress, differed markedly from the 

Greedy Heuristic's. By considering the issue holistically, the MILP model optimised the 

charging schedule for the full 21-day duration. Consequently, it dispersed the charging more 

efficiently, which decreased the quantity of cars that needed public chargers.  

Main Findings: 

• Optimal Station Utilisation: By spreading out the charging over several days, the 

MILP model made greater use of the station and prevented cars from being charged 

too soon or too much. As a result, fewer cars needed public charging stations. 

• Reduction of Public Charging: The MILP system successfully balanced the 

charging needs over a 21-day period by using only the station, thereby completely 

avoiding public charging. 

• Cost Efficiency: Using the MILP model, the entire cost of charging was 980 
units, all of which were related to station charging and not to public charging. 

• Systematic Scheduling: To guarantee that no vehicle gets charged too soon 
or too much, the model distributes the charging jobs over a number of days. A 
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strategy like this reduces downtime and optimises the fleet's operational 
capabilities, according to Dukpa and Butrylo (2022). 

•  
 
Day-by-Day Analysis of the MILP Model (Xpress Output) 
 

Key Observations from MILP Model (Xpress Output): 

Day 1: Vehicle 2, Vehicle 7, Vehicle 10, Vehicle 12, and Vehicle 13 were the five vehicles 

that were charged at the station on Day 1. Since the concept relies solely on station 

charging, it minimises costs by not utilising public chargers. 

 

Figure 3: Output of Day 1 Charging vehicles 

Key Conclusion: This is an example of how to best utilise the station's capacity—it can 

charge five cars a day, and on Day 1, every slot is taken. This ensures that vehicles with 

lower charge are prioritized. This result is supported by studies like Akaber et al. (2021), 

which highlight that avoiding public chargers minimizes costs and ensures better utilization 

of infrastructure. 

 

Day 2: In the second day, the vehicles, 1, 4, 6, 8, and 9, are charged at the station. Once 

more, the whole capacity of the station is occupied, and no public chargers are used. 
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Figure 4: Output of Day 2 Charging vehicles 

Key Summary: The MILP approach makes sure that vehicles are taxed fairly and distributes 

station usage among the fleet without getting too crowded. MILP models, according to Liu 

and Lamsali (2009), help in the methodical distribution of resources, preventing bottlenecks 

that may result from arbitrary scheduling techniques like greedy heuristics. 

 

Day 3: 

On Day 3, of operation, the following vehicles are charged: 3, 5, 9, 11, and 14. This indicates 

a change in focus to the cars that weren't charged the days before, making sure that every 

car receives the necessary amount of charging time. 

 

Figure 5: Output of Day 3 Charging vehicles 

 

Key Conclusion: By ensuring that vehicles are only charged when required, the model 

efficiently controls charge scheduling based on current charge levels and operating 

requirements. This is in line with the methodology outlined by Dukpa and Butrylo (2022), 

who stress the use of optimisation models to cut down on pointless charging occurrences. 

 

Day 4: On the fourth day, the vehicles 2, 7, 10, 12, and 13 are charged once more. After 

their initial charges on Day 1, these vehicles most likely had their charge levels lowered to 

critical levels. The MILP model's capacity to stop resource waste is demonstrated by the 

methodical prioritisation of vehicles according to need. 
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Figure 6: Output of Day 4 Charging vehicles 

Key Conclusion: Vehicles that are recharged at predetermined times maintain optimal 

operational efficiency and minimise downtime from battery depletion. Liu et al. (2019) 

assert that MILP prevents unexpected operational inefficiencies by ensuring that 

resource allocation happens gradually as opposed to in clusters. 

 
 

Day 5: Vehicle 1, Vehicle 4, Vehicle 6, Vehicle 8, and Vehicle 9 are the vehicles that 

were charged on Day 5. This pattern demonstrates the model's attempt to allocate 

charging duties equitably, making use of available resources and ensuring that no 

vehicle fails to meet operational requirements. 

 

 
Figure 7: Output of Day 5 Charging vehicles 

 

Key Conclusion: A well-balanced charging schedule, like the one the MILP uses, 

reduces energy waste and guarantees that the station is used to its maximum potential 

each day. According to Zhang et al. (2021), such balanced timetables are essential for 

fleet management in the actual world.

 
 

Day 6 to Day 10: For the next ten days, the process stays the same, with cars being 

charged in groups according to how much of their charge is left. Throughout the whole 
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scheduling period, vehicles are exclusively charged at the station, guaranteeing that no 

public chargers are utilised. 

 

Key Conclusion: As can be seen from the output, the MILP model successfully 

minimises the overall cost by avoiding public charging and only using station-based 

resources. Liu and Lamsali (2009) state that station-based charging is the best choice for 

fleet management because it is usually more affordable and dependable. 

 

  
Figure 8: Output of Day 6-9 Charging vehicles 

 

 
Figure 9: Output of Day 10 Charging vehicles 

 

 
 

Day 11 to Day 21: This structure is maintained over the last few days, guaranteeing that 

each car is fully charged and preventing any extra expenses. No public chargers are 

used for 21 days, and the station is continuously used to its full capacity. 
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Key Conclusion: The methodical way in which the MILP model meets every car's 

charging requirement while ever going over the station's capacity shows how consistent 

it is. It is an economical approach because the final cost of 980 units includes all station-

based charging expenses without the need for public chargers. 

 

  
Figure 10: Output of electric vehicle for days 11 to 14 

 

       
Figure 11: Output of electric vehicle for days 11 to 14 
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Figure 12: Output of electric vehicle for days 19 to 21 

 

After the completion of the charging process, each vehicle's charging schedule and the 

overall cost of the charging activities are computed and presented. 

 

 
This loop prints each vehicle's daily results. It determines if every car v was charged at a 

public charger (y(v,d) = 1) or at the station (x(v,d) = 1) for every day d. 

 

• getsol(x(v,d)): Get the solution for the decision variable x(v,d) (station charging)  

• getsol(y(v,d)): Get the solution for the decision variable y(v,d) (public charging) 

 

Calculating Costs: 
 

• Total Station Cost: The MILP model indicates that there are 980 units involved 

in using the station overall. Since no public chargers were used, this indicates 

that the station was fully utilised. It also shows how many times cars were 

charged at the station. This represents the total amount spent on vehicle charging 

at the station for the duration of the transaction. The MILP model determined the 
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overall cost of station charging based on the cost per station charge (fs = 10 

units) and the total number of charging events. 

• Total Public Cost: The outcome indicates that there are 0 units of total public 

charge costs. This suggests that the MILP model was able to successfully avoid 

utilising any public chargers, which is consistent with the model's objective of 

reducing expenses by giving station-based charging priority. Since the model was 

able to avoid public charging, none was used. Avoiding the use of public chargers 

lowers the overall cost greatly because they are typically more expensive (15 

units per charge). 

• Total Cost (980 units): Station-based charging, which is more economical 
than utilising public chargers, is solely responsible for the total cost. 

 

The MILP model avoids using public chargers in this cost-minimization technique, which is in 

line with fleet optimisation literature's recommended practices. Public charging should be 

avoided if possible because they frequently have greater operating expenses, according to 

Akaber et al. (2021). Dukpa and Butrylo (2022) propose that optimal charging schedules 

should prioritise the economical utilisation of infrastructure, as seen by this model's sole 

dependence on station chargers. 

 

Furthermore, Liu and Lamsali (2009) pointed out how crucial it is to apply MILP models for 

operational efficiency in fleet management, where the goal is to keep fleet availability while 

minimising costs. The total cost of 980 units for this model, without any public charges, 

shows how MILP can offer the best answer for such difficult scheduling issues. 

Day-by-Day Analysis of the Greedy Heuristic 

The Greedy Heuristic, which is developed in Python, aims to reduce expenses by utilising 

public chargers only when the station is full and charging cars whenever feasible at the 

station. The daily urgent necessity for charging informs the decision-making process. Over 

the course of 21 days, a fleet of electric vehicles (EVs) are scheduled to be charged using 

the Python implementation of the Greedy Heuristic algorithm. The objective is to keep the 

overall cost of charging as low as possible while making sure that vehicles are charged as 

needed. Understanding the outcomes of the Greedy Heuristic technique requires examining 

the data on a daily basis, paying particular attention to the cars that are charged at stations 

and public chargers, as well as the overall expense. 

Key Findings: 

When deciding whether to charge a vehicle, the Greedy Heuristic algorithm considers the 

following important factors: 

• Station capacity (C = 5): The station can only charge a maximum of 5 cars every 

day. 

• Station charging costs (fs = 10) and public charging costs (fp = 15): The 

algorithm prioritises station-based charging over public charging to reduce the overall 

cost. 

• Battery levels (t and t0): After a car is fully charged, it can run for a set amount of 

time (t), and as time goes on, its current charge level (t0) drops. 
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The algorithm of the Greedy Heuristic: 

• Vehicles are arranged according to their present charge levels (t0). 

• Charges cars at the station if there is room and the vehicle's charge is less 
than a certain amount. 

• If the car needs to be charged and the station is full, it can be charged at 
public chargers. 
 

Key Observations of the Greedy Heuristic (Python Output): 

• Day 1: Vehicle 5 was the only one to be charged on station charge in 
accordance with its running capacity; other vehicles were not charged at the 
station or using public chargers. Most likely, the remainder of the car had 
enough initial charge to run on its own the first day. 

• Key findings: Total Station Cost: 10, Total Public Cost: 0 

 

Figure 13: Output of Day 1 Charging vehicles 

 

• Day 2: At the station, five vehicles (Vehicles 2, 6, 10, 14, and 18) were charged. 

There were no public chargers used. Vehicles with smaller charges were identified by 

the algorithm, which gave them priority for station charging. 

• Key Findings: Total Station Cost: 4 * 10 = 40, Total Public Cost: 0 

 

 
Figure 14: Output of Day 2 Charging vehicles 
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• Day 3: Three vehicles were charged at the station. There was no public charging. 

This implies that vehicles with vital battery levels were supposed to be charged at the 

station. 

• Key Findings: Total Station Cost: 3 * 10 = 30, Total Public Cost: 0 

 

 
Figure 15: Output of Day 3 Charging vehicles 

 

• Day 4: Four vehicles were charged at the station, but no public chargers were 

utilised. 

• Key Findings: Total Station Cost: 4 * 10 = 40, Total Public Cost: 0 

 

Figure 16: Output of Day 4 Charging vehicles 

 

• Day 5: Only two vehicles were being charged at the station, a modest reduction in 

station charging. No public charging, once more. 

• Key Findings: Total Station Cost: 2 * 10 = 20, Total Public Cost: 0 
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Figure 17: Output of Day 5 Charging vehicles 

 

Day 6: Due to the full five vehicles charging at the station, only one vehicle (Vehicle 14) was 

able to use the public charger. Because the station was full, this was the first day that public 

charging had been used. 

Key Findings: Total Station Cost: 5 * 10 = 50, Total Public Cost: 1 * 15 = 15 

 

Figure 18:  Output of Day 6 Charging vehicles 

 

Days 7–21: This pattern persisted, with different levels of station usage and occasional need 

on public charging. There were days when all five station slots were occupied, and days 

when fewer cars were charged, and fewer people used public chargers. 

Key Findings: 

         

Figure 19: Output of electric vehicle for days 7 to 10. 
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Figure 20: Output of electric vehicle for days 11 to 14 

            

Figure 21: Output of electric vehicle for days 15 to 18 

 
Figure 22: Output of electric vehicle for days 19 to 21 
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After the completion of the charging process, each vehicle's charging schedule and the 

overall cost of the charging activities are computed and presented. 

 

 
 

• The outer for loop counts the days (D), and the inner for loop counts the number of 

vehicles (V) within each day. 

• The program outcome, for each vehicle on a particular day, whether the vehicle has a 

Public Charge (y[v,d]) or a Station Charge (x[v,d]). 

• A vehicle charged at a designated station is referred to as being stationed, whereas a 

vehicle charged at a public charging facility is referred to as being publically charged, 

usually at a greater fee or depending on availability. 

Costs Calculation: 

• Total Station Cost: This represents the expense related to charging at designated 

stations and is computed by multiplying the total station charges by the cost per 

station charge (fs). 

• Total Public Cost: This represents the cost of using public charging facilities, which 

is frequently greater due to the premium on accessibility and convenience. It is 

computed by multiplying the total number of public charges by the cost per public 

charge (fp). 

• Total Cost: The total cost provides an overall figure for charging all vehicles 
throughout the specified period by adding the station and public charges 
together. 

 
The algorithm tries to minimise public charging because the overall cost of the 
station is less than the cost of public charging. On the other hand, when the station's 
capacity is exceeded, public charging becomes essential and raises the overall cost. 
 
For instance, Vehicle 14 uses a public charger on Day 6, increasing the overall cost 
to the public. After deducting the total public cost of $15 and the final total station 
cost of 670, the total cost comes to 685. 
 
The problem of EV charging with capacity limits can be resolved with ease using the 
greedy heuristic. It functions on a "locally optimal" premise, which means that 
instead of taking the whole planning horizon into account, decisions are made based 
on the needs of the moment. This results in a quick but occasionally inadequate 
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response. The project's total costs are effectively minimised using the greedy 
heuristic, which favours station charge above public charging. 
 
The greedy heuristic is an easy way to address the capacity-limited EV charging 
problem. Its "locally optimal" concept dictates that decisions are made based on the 
necessities of the present, rather than considering the planning horizon as a whole. 
This leads to a prompt response that is occasionally insufficient. By favouring station 
charge above public charging, the greedy heuristic effectively minimises the project's 
overall expenses. 
 
Greedy heuristics work well in large-scale issues where precise solutions are not 
feasible due to time or computer resource limitations. Zhou and Rong (2016) have 
observed that heuristic approaches offer quick and almost optimal solutions for 
making decisions in real time, like planning when to charge an electric vehicle. They 
offer a decent compromise between efficiency and solution quality, even though they 
are not globally optimal [Zhou & Rong, 2016]. 
 
Comparison Matrix: Greedy Heuristic vs. MILP (Mixed-Integer Linear 
Programming) 
 
A comparison matrix is provided below to help you decide which way is best for 
scheduling an electric vehicle (EV) fleet's charging. The comparison is broken down 
by the matrix according to a number of important performance parameters, including 
overall cost, station utilisation, dependency on public charging, computational 
efficiency, flexibility, scalability, and usefulness. 

Criteria 
 

Greedy 
Heuristic 
(Python) 

MILP (Xpress) 
 

Comments/Comparison 

Total Charging 
Cost 

685 units 
(Station: 670, 
Public: 15) 

980 units 
(Station: 980, 
Public: 0) 

Greedy Heuristic has a 
reduced overall cost 
because the public 
charging is used 
selectively 

Station 
Utilization 

Fully functional 
but occasionally 
undercharged 
vehicles 

Optimised, 
spreading 
utilisation 
throughout the 
time slot 

MILP is more effective at 
distributing use and 
preventing overcharging. 

Public Charging Used public 
charging as the 
alignment was 
not matched 

No public 
charging used 

Since MILP never uses 
public charging, it is 
more dependable in 
scenarios where public 
chargers are expensive 
or difficult to get. 

Computational 
Efficiency 

High (Low 
computational 
requirements 
and quick to 
execute) 

Low (To solve 
MILP, more 
processing 
power is 
needed) 

Greedy Heuristic 
performs better in large-
scale or real-time 
applications since it is 
less computationally 
demanding and faster. 
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Solution 
Optimality 

Near-optimal 
(short-sighted 
decisions may 
lead to 
suboptimal 
schedules) 

worldwide best 
option for the full 
21 days 
 

Despite potentially 
requiring more 
processing resources, 
MILP offers a more 
globally optimised 
approach. 

Flexibility Easily adjustable 
for making 
decisions in real 
time 

requires solving 
the entire model 
up front, leaving 
little room for 
adjustments 
made in real 
time. 

Greater adaptability for 
dynamic, real-time 
contexts is provided by 
the greedy heuristic. 
 

Scalability Easily expands 
to bigger fleets 
(with additional 
days and cars) 

costly to 
compute for 
larger-scale 
issues 

Greedy Heuristic is more 
scalable, particularly 
when the size of the 
problem grows. 

Practical 
Applicability 

Ideal for 
applications on a 
small to medium 
scale where 
computational 
efficiency is 
crucial 

Suitable for 
controlled 
environments 
where the goal 
is to minimize 
public charging 
completely 

Because of its 
computational needs, 
MILP may not be as 
useful for real-time fleet 
management. 

Table 2: Comparison Matrix: Greedy Heuristic vs. MILP 
 
 
Comparison of Charging Methods: Station Charging, Public Charging, and No 
Charging 
 

Charging 
Method 

Advantages Disadvantages Limitations Challenges 

Station 
Charging 

-Reduced 
cost of 
charging (£10 
for each 
charge) 
 
-ideal for 
scheduling 
using 
heuristic 
models and 
MILP 
Consistent 
and 
manageable 
timetable 
 
-Improved 
grid control 
and 

- Limited station 
capacity (5 
vehicles per day 
in the project) 
 
- Dependency on 
infrastructure 
availability is 
high. 
 

- Needs careful 
planning to 
prevent 
bottlenecks 

 
- High charging 
station setup 
costs at first 

 

-Dividing the 14 
vehicle’s, 
limited station 
capacity 
 
- Managing 
station 
accessibility at 
busy times. 
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integration 
with 
renewable 
energy 

Public Charging – Flexible 
use, 
particularly in 
situations 
involving real-
time usage 
(Greedy 
Heuristic)  
 
– Backup 
charging 
option if the 
station's 
capacity is 
reached 
 

-Increased billing 
expenses (£15 
for each charge 
for every use). 
 
- Less 
predictable 
availability 
 
- Dependency on 
external 
infrastructure 
 

-Utilised 
infrequently in 
the project 
because of 
increased 
expenses 
 
- Limited 
authority over 
the location 
and timing of 
public 
charging 
 

 - Handling the 
unpredictable 
availability of 
public 
charging 
stations 
 
 - Weighing 
the trade-off 
between 
operational 
flexibility and 
cost 
 

No Charging - No direct 
charging 
costs 

- Risk of vehicle 
downtime in 
operations 
- Inefficiencies 
due to 
uncharged 
vehicles 

- Fleet 
availability is 
decreased by 
uncharged 
vehicles, which 
causes 
operational 
disturbances. 
 
- Elevated 
chance of 
downtime and 
battery 
depletion 
 

- Ensuring that 
every vehicle 
has enough 
charge 
 
- A higher 
chance of 
stranded cars 
while 
operations are 
underway 
 

Table 3: Comparison of Charging Methods: Station Charging, Public Charging, and 
No Charging 
 

7. Discussion 

The goal of this project was to use a Mixed-Integer Linear Programming (MILP) model in 

conjunction with a greedy heuristic technique to optimise the nighttime charging schedules of 

electric vehicle (EV) fleets. The outcomes of the two approaches were contrasted, and the 

ramifications were examined. The discussion will be connected to the literature review 

findings in this part, emphasising whether the outcomes support or refute earlier 

conclusions. 

Optimizing Station-Based Charging: A Comparative Analysis 

The principal aim of both approaches was to reduce overall expenses by giving preference 

to station-based charging as opposed to public charging. The findings showed that the MILP 

model was more successful in achieving this goal since it appropriately distributed charging 

resources over the full scheduling horizon, hence eliminating public charging costs. Even 
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while the greedy heuristic was quicker and less expensive computationally, it resulted in a 

little amount of public charge, which raised overall expenses marginally. 

MILP-based models are a good fit for optimisation problems that need global solutions over 

a long-time horizon, according to Chen et al. (2019). This is consistent with the project's 

results, where the MILP model yielded a 980 unit total station cost that included no public 

charging expenses. By comparison, the greedy heuristic led to a total cost of 685 units, 

which included a station cost of 670 units and a public charging cost of 15 units.  

The greedy heuristic model's slight reliance on public charging suggests that it is incapable 

of taking long-term constraints into account. This is a limitation that has been brought to light 

in the literature by Xu et al. (2017), who point out that while heuristic methods are useful for 

short-term planning, they frequently prove inadequate when applied to longer planning 

horizons.  

As mentioned in Xiong et al. (2020), another reason for the MILP model's success is its 

capacity to manage the complexity of large-scale scheduling challenges. By efficiently 

allocating charging across all available stations, MILP can reduce operating expenses, which 

is advantageous for large-scale EV fleet operators. This strategy is supported by the 

research, which indicates that long-term, globally optimised models such as MILP are 

especially helpful in situations when station capacity is constrained, as in this project, where 

the daily capacity of the charging station was restricted to 5 vehicles. 

Feasibility of Heuristic Approaches 

Even if the MILP model is better at cost optimisation, the greedy heuristic technique is still 

useful in real-world situations when decisions must be made quickly. Zhang et al. (2021) 

have emphasised the usefulness of heuristic algorithms in scenarios requiring prompt 

decision-making and limited processing resources. This concept is upheld by the greedy 

heuristic model used in this project, which assesses each vehicle's remaining charge levels 

and decides when to charge it based only on its immediate demands, disregarding any 

potential future limitations. This makes it especially helpful for smaller fleets or businesses 

where finding quick fixes is more important than optimising for global reach. 

Additionally, research indicates that hybrid approaches—which combine more reliable 

optimisation models like MILP with heuristic algorithms—might provide a middle ground 

between short-term cost optimisation and long-term decision-making (Chen et al., 2019).  

For example, in situations when computational resources are few, long-term planning may 

be done using a MILP model during off-peak hours, while the greedy heuristic could be 

applied in the short term. Wang and Xu (2019), who contend that a combination of 

optimisation strategies is frequently the most workable answer for fleet management in the 

real world, support this hybrid approach. 

Field Contributions: Linking Short-Term and Long-Term Optimisation 

The advantages and disadvantages of both greedy heuristic and MILP techniques are 

highlighted in this project, which advances the field of EV fleet charging optimisation. This 

project demonstrates that, depending on the particular operational needs, these two 

approaches can complement each other, contrary to previous literature which has typically 

considered them as mutually exclusive. The MILP model continues to be the industry 



38 | P a g e  
 

standard for large-scale, long-term optimisation because of its capacity to reduce costs 

associated with both the environment and money. The results of Xu et al. (2017) and Chen 

et al. (2019), who supported the application of MILP in global fleet optimisation, are 

corroborated by this project. 

The project's contribution, nevertheless, is in showing how heuristic methods, such as the 

greedy heuristic, can be quite beneficial for making snap decisions in the moment. Zhang et 

al. (2021) suggested that heuristics are more adaptable to immediate operational 

constraints, and this project’s findings align with that conclusion. 

Practical Implications: Adopting Hybrid Approaches 

Fleet operators can use a hybrid approach, utilising the greedy heuristic for daily operations 

and the MILP model for long-term planning, based on the project's outcomes. This advice is 

backed by the research, where Liu and Wang (2018) contend that hybrid models combine 

the advantages of global optimisation powers of MILP with the computational efficiency of 

heuristics. This work contributes to that body of knowledge by showing that, in situations 

when prompt decision-making is crucial, even a basic greedy heuristic can provide 

competitive outcomes. 

Furthermore, as suggested by Xu et al. (2017), subsequent versions of this idea might 

incorporate renewable energy into the charging infrastructure. Integrating renewable energy 

sources into EV fleet operations has been shown to have both financial and environmental 

benefits; this might further minimise the need for public charging while lowering expenses 

and carbon emissions. 

In Conclusion, the results of this study essentially support previous studies on the relative 

advantages of heuristic algorithms and MILP in EV fleet charging optimisation. The greedy 

heuristic, while marginally more costly, produced quicker results with less processing 

demands than the MILP model, which delivered a globally optimal solution that totally 

eliminated public charges and minimised overall expenses. The potential for mixed 

approaches—wherein both MILP and heuristics can be used depending on particular 

operational needs—is what this effort contributes to the field. 

This project contributes new insights into how fleet operators may balance cost, 

environmental effect, and computing resources to optimise charging schedules, expanding 

on the work of Liu and Wang (2018), Xu et al. (2017), and Zhang et al. (2021). The results 

open up new research directions and validate earlier findings, especially in the areas of 

hybrid optimisation model development and renewable energy integration. 
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8. Conclusion 

This study compared two different methods, a Greedy Heuristic algorithm and a Mixed-

Integer Linear Programming (MILP) model, in order to determine the best charging strategy 

for an EV fleet. Since public chargers are usually more expensive and less efficient, the 

project's overall purpose was to minimise overall charging costs while maximising station-

based charging consumption. This study tackled the problem of scheduling charging for a 

fleet of 14 vehicles over a 21-day period using both a Greedy Heuristic algorithm developed 

in Python and an Xpress Workbench-implemented MILP model. 

With a total charging cost of 980 units, the MILP model completely relies on station-based 

charging, doing away with the requirement for public chargers. This highlights the model's 

capacity to give globally optimum solutions, making it very efficient at saving operational 

expenses and assuring optimal fleet management. Assuring that there were no extra 

expenses associated with using public charging stations, the model made full use of the 

station capacity. This validates the results of earlier research, such as Xu et al. (2017) and 

Chen et al. (2019), which highlighted the advantages of station-based charging over public 

charging in terms of both cost and environmental effects. 

In contrast, the Greedy Heuristic method produced a total cost of 685 units, which included 

15 units from public charging. The Greedy Heuristic reduced costs overall, but its 

dependency on public charging showed that there is a trade-off between computational 

simplicity and optimality. In comparison to the MILP solution, the heuristic approach resulted 

in greater expenses but enabled faster real-time decision-making. The somewhat increased 

public charge is consistent with research by Zhang et al. (2021), which demonstrates that 

heuristic approaches can provide effective but not always globally optimal solutions. 

Summary of Project Process and Findings 

The first step in the project was developing the MILP model, which involved making sure 

every car had enough charge to fulfil operational needs, maximising the usage of station-

based chargers, and minimising public charging. Xpress Workbench was utilised to solve the 

model, which included multiple real-world constraints like as vehicle charging requirements 

and station capacity limitations.  

The MILP approach worked incredibly well, fully removing the requirement for public 

chargers and providing an economical charging schedule. The findings showed that the 

optimisation model can fully utilise station capacity, which makes it very advantageous for 

fleet operators who place a high priority on environmental sustainability and cost reduction. 

The 980 units' total cost shown that depending on station-based charging is essential to 

obtaining economical and ecologically friendly solutions. 

The second strategy was created as a more computationally effective real-time decision-

making tool: the Greedy Heuristic algorithm. When a station's capacity was reached, the 

algorithm permitted public charging but gave priority to station-based charging. Even while 

the Greedy Heuristic increased overall costs, it was successful in reducing the number of 

public chargers used—only 15 of the 685 units were incurred by public charging. This 

outcome emphasises even more the effectiveness of heuristic techniques in situations when 

prompt decision-making is required without the requirement for intricate global optimisation. 
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Discussion Topics and Important Results 

The main conclusion drawn from this project is that, as anticipated, the MILP model's full 

utilisation of station-based charging resulted in a more economical solution. For fleet 

operators who need to make choices quickly, however, its high computing complexity and 

lengthy solution time make it less feasible. The MILP model provides a better answer for 

long-term planning or operations with access to sophisticated computational resources. In 

contrast, the Greedy Heuristic, while not achieving the same level of cost optimization, offers 

a practical alternative for fleet operators needing real-time solutions, especially when 

computational resources are limited. 

These results are consistent with earlier research, like that of Xu et al. (2017) and Chen et 

al. (2019), which emphasised the value of station-based charging in lowering expenses and 

decreasing dependency on public infrastructure. The project's outcomes support these 

assertions even more, demonstrating that fleet operators looking for sustainable and 

affordable solutions must prioritise station-based charging or expand station capacity in 

algorithmic decision-making. Furthermore, as Wang and Xu (2019) point out, the MILP 

model's results demonstrate the environmental advantages of station-based charging, as the 

removal of public chargers lowers expenses as well as emissions. 

Critical Evaluation 

The project's success relies in its unambiguous presentation of the trade-offs between 

computing efficiency (as in the Greedy Heuristic) and global optimisation (as in the MILP 

model). The MILP model's capacity to do away with public charging attests to its efficacy in 

cost minimisation; nevertheless, its computational requirements restrict its practical use. This 

echoes the findings of Xiong et al. (2020), who noted the challenges of using MILP models 

for real-time applications. 

Even though it was computationally efficient, the Greedy Heuristic increased dependency on 

public charging, which could have negative effects on the environment and raise long-term 

operating expenses. The results indicate that fleet operators with bigger station capacity or 

higher computational resources should favour more complicated models like MILP, even if 

only for long-term planning, even though this dependency was reduced to 15 units out of the 

total 685 units. 

The project's fundamental constraint stemmed from the presumption of a constant fleet size 

and station capacity. Variations in fleet size and station capacity may influence charging 

schedules and overall expenses. In the future, these variables should be taken into 

consideration using stochastic or dynamic models that can adjust in real time to changes in 

fleet operations. Furthermore, the initiative prioritised cost reduction over other crucial 

aspects, such as customer satisfaction and car battery degradation. According to Wang and 

Xu (2019), these elements are essential for comprehensive fleet management and ought to 

be taken into account in subsequent studies. 

Suggestions & Future Directions 

Several recommendations for further study and fleet operations are made in light of the 

project's limits and conclusions. 
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• Dynamic and Real-Time Optimisation Models: Upcoming studies should create 

dynamic or real-time optimisation models that can adjust to changing station 

capacities, fleet sizes, and electricity consumption. Fleet operators facing uncertainty 

may find more flexible and adaptive solutions in the form of machine learning models 

or stochastic programming. 

• Integration of Renewable Energy Sources: Future research should look at 

incorporating renewable energy sources—like solar or wind power—into EV charging 

infrastructure in order to improve sustainability even more. As mentioned by Liu and 

Wang (2018), this would save operating expenses while simultaneously reducing the 

impact on the environment. 

• Hybrid Models for Optimisation: By combining the advantages of heuristic and 

MILP techniques, hybrid models may be able to provide computationally efficient 

solutions for real-time operations and globally optimal solutions for long-term 

planning. For example, fleet-wide scheduling could be handled by MILP, while day-to-

day, instantaneous charging decisions could be managed by a modified Greedy 

Heuristic (Chen et al., 2019). 

• Multi-objective Optimisation: To combine cost minimisation with other operational 

goals, such battery deterioration, vehicle maintenance, and customer happiness, 

future research could build on this concept by incorporating multi-objective 

optimisation. This would be in line with the increasing need for fleet management that 

is customer-focused and sustainable (Wang and Xu, 2019). 

To sum up, this study effectively illustrated how the MILP model and the Greedy Heuristic 

technique can be used to optimise EV fleet charging schedules. While the Greedy Heuristic 

gave a computationally efficient substitute for real-time decision-making, the MILP model 

offered a globally optimal solution by fully utilising station-based charging and minimising 

costs. These findings align with previous research, confirming the benefits of station-based 

charging and the trade-offs between optimization and computational efficiency. However, the 

project also highlighted several areas for improvement, such as the need for dynamic 

models, renewable energy integration, and multi-objective optimization. These prospective 

pathways for future research offer more ways to improve the sustainability and efficiency of 

managing EV fleets. 

 

 

 

 

 

 

 

 

 



42 | P a g e  
 

References 

1. Alonso, M., Amaris, H., Germain, J.G. and Galan, J.M., 2014. Optimal 

charging scheduling of electric vehicles in smart grids by heuristic algorithms. 

Energies, 7(4), pp.2449-2475. 

2. Houbbadi, A., Zouaghi, M., Bourguet, S., Eddine, B., and Mesbahi, E., 2019. 

Optimal scheduling to manage an electric bus fleet overnight charging. IEEE 

Transactions on Vehicular Technology, 68(2), pp.1091-1099. 

3. Liu, Z., Mu, Y., Jia, H., Xu, J., Wu, J. and Yu, X., 2021. Optimal EV charging 

scheduling considering the limited number of chargers and time-of-use prices. 

IEEE Transactions on Smart Grid, 12(3), pp. 2649-2661. 

4. Chen, H., Hu, Z., Luo, H., Rajagopal, R. and Zhang, H., 2020. Real-time 

coordinated charging strategies of electric bus fleets. Energies, 12(5), pp.1-

12. 

5. Gao, H., Zhang, R. and Wang, H., 2019. Optimization of large-scale electric 

bus fleets using genetic algorithms. Journal of Power Sources, 321, pp.312-

324. 

6. Jahic, E., Milinkovic, V. and Vuckovic, S., 2019. Scheduling large-scale 

electric bus fleets using greedy algorithms. Journal of Cleaner Transportation, 

27, pp.102-118. 

7. Rinaldi, M., Ferreti, P. and Lanza, G., 2013. Electric vehicle fleet optimization 

using mixed-integer linear programming. Journal of Operations Research, 

12(1), pp.132-145. 

8. Wang, X., Wu, Y., Zhang, L. and Zhang, Z., 2020. Markov decision processes 

for optimizing EV charging scheduling with battery aging consideration. IEEE 

Transactions on Power Systems, 35(1), pp.85-97. 

9. Yang, H., Liu, Z. and Zhang, Q., 2021. A scenario-based stochastic model for 

optimizing electric bus charging schedules. IEEE Transactions on Smart Grid, 

12(2), pp.1425-1437. 

10. Zhang, Y., Cai, L. and Song, Y., 2019. Optimal scheduling for EV charging 

stations in distribution networks. IEEE Transactions on Power Systems, 32(2), 

pp.1050-1063. 

11. Amirhosseini, B. and Hosseini, S.M.H., 2018. Scheduling charging of hybrid-

electric vehicles according to supply and demand based on particle swarm 

optimization, imperialist competitive and teaching-learning algorithms. 

Sustainable Cities and Society, 43, pp.339-349. 

12. Lajunen, A., 2014. Energy consumption and cost-benefit analysis of hybrid 

and electric city buses. Transportation Research Part C: Emerging 

Technologies, 38, pp.1-15. 

13. Ou, X., Zhang, X. and Chang, S., 2010. Alternative fuel buses currently in use 

in China: Life-cycle fossil energy use, GHG emissions and policy 

recommendations. Energy Policy, 38(1), pp.406-418. 



43 | P a g e  
 

14. Pelletier, S., Jabali, O. and Laporte, G., 2019. The electric vehicle routing 

problem with energy consumption uncertainty. Transportation Research Part 

B: Methodological, 126, pp.225-255. 

15. Yao, E., Liu, T., Lu, T. and Yang, Y., 2019. Optimization of electric vehicle 

scheduling with multiple vehicle types in public transport. Sustainable Cities 

and Society, 52, pp.101862. 

16. Liu, J. and Lamsali, H., 2009. Optimizing Location and Allocation Problems 

Using MILP Models. Journal of Advanced Systems, 15(2), pp.123-136. 

17. Liu, Y. & Xu, G. (2017) ‘MILP-based Energy Management Strategies for 

Electric Vehicles’, Energy, 12(4), pp. 715-729. 

18. Xu, X., Tang, J., & Liu, Y. (2017) ‘Greedy Heuristic for EV Charging with 

Renewable Energy Sources’, Journal of Sustainable Energy, 9(2), pp. 324-

341. 

19. Zhou, J. & Rong, J. (2016) ‘Heuristic Approaches to Scheduling Electric 

Vehicle Charging Stations’, International Journal of Energy Management, 

14(7), pp. 2145-2160. 

20. Wang, Q. & Xu, J. (2019). Incentives for Station-Based Charging of Electric 

Vehicle Fleets. Journal of Energy Management, 14(3), pp. 234-245. 

21. Xiong, W., Zhang, M., & Chen, L. (2020). Optimizing electric vehicle fleet 

charging with mixed-integer linear programming. Transportation Research 

Part C, 21(7), pp. 143-159. 

22. Zhang, S., Wang, H., & Liu, J. (2021). Heuristic algorithms for scheduling 

electric vehicle charging: A case study. Journal of Sustainable Energy, 8(5), 

pp. 415-430. 

23. Chen, J., Wang, T., & Xu, H. (2019). Hybrid optimization models for electric 

vehicle fleet management. International Journal of Fleet Operations, 9(2), pp. 

101-119. 

24. Liu, Y. & Wang, Q. (2018). Renewable energy integration in electric vehicle 

fleet charging optimization. Journal of Energy and Power, 13(4), pp. 67-79. 

25. Xu, G., Liu, Y., & Zhang, Y. (2017). Heuristic approaches to optimizing electric 

vehicle charging schedules. Energy Systems, 23(2), pp. 152-167. 

26. Lewandowski, C., Groning, S., Schmutzler, J. and Wietfeld, C. (2012) 

‘Interference analyses of Electric Vehicle charging using PLC on the Control 

Pilot’, 2012 IEEE International Symposium on Power Line Communications 

and Its Applications, Beijing, China, 27–30 March, pp. 350–355 

27. Mouli, G.R.C., Kaptein, J., Bauer, P. and Zeman, M. (2016) ‘Implementation of 

dynamic charging and V2G using Chademo and CCS/Combo DC charging 

standard’, 2016 IEEE Transportation Electrification Conference and Expo 

(ITEC), Dearborn, MI, USA, 27–29 June, pp. 1–6. 

28. Nikdel, M. (2014) ‘Various battery models for various simulation studies and 

applications’, Renewable and Sustainable Energy Reviews, 32, pp. 477–485. 

29. Trigui, R., Jeanneret, B. and Badin, F. (2004) ‘Systemic modelling of hybrid 

vehicles in order to predict dynamic performance and energy consumption: 



44 | P a g e  
 

building the VEHLIB library of models’, Recherches Transports Sécurité, 21, 

pp. 129–150. doi:10.1016/j.rps.2004.10.003. 

30. Jaguemont, J., Boulon, L. and Dubé, Y. (2016) ‘A comprehensive review of 

lithium-ion batteries used in hybrid and electric vehicles at cold temperatures’, 

Applied Energy, 164, pp. 99–114. doi:10.1016/j.apenergy.2015.11.034. 

31. Jaguemont, J., Boulon, L. and Dubé, Y. (2016) ‘Characterization and Modeling 

of a Hybrid-Electric-Vehicle Lithium-Ion Battery Pack at Low Temperatures’, 

IEEE Transactions on Vehicular Technology, 65(1), pp. 1–14. 

doi:10.1109/TVT.2015.2402751. 

32. Bernardi, D., Pawlikowski, E. and Newman, J. (1985) ‘A General Energy 

Balance for Battery Systems’, Journal of the Electrochemical Society, 132(1), 

pp. 5–12. doi:10.1149/1.2113792. 

33. Lin, C., Xu, S., Li, Z., Li, B., Chang, G. and Liu, J. (2015) ‘Thermal analysis of 

large-capacity LiFePO4 power batteries for electric vehicles’, Journal of 

Power Sources, 294, pp. 633–642. doi:10.1016/j.jpowsour.2015.07.055. 

34. Redondo-Iglesias, E., Venet, P. and Pelissier, S. (2018) ‘Global Model for Self-

Discharge and Capacity Fade in Lithium-Ion Batteries Based on the 

Generalized Eyring Relationship’, IEEE Transactions on Vehicular 

Technology, 67(1), pp. 104–113. doi:10.1109/TVT.2017.2726619. 

35. Jaguemont, J., Boulon, L., Venet, P., Dubé, Y. and Sari, A. (2016) ‘Lithium-Ion 

Battery Aging Experiments at Subzero Temperatures and Model Development 

for Capacity Fade Estimation’, IEEE Transactions on Vehicular Technology, 

65(6), pp. 4328–4343. doi:10.1109/TVT.2015.2508859. 

36. Petit, M., Prada, E. and Sauvant-Moynot, V. (2016) ‘Development of an 

empirical aging model for Li-ion batteries and application to assess their long-

term performance’, Journal of Energy Storage, 6, pp. 47–54. 


